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Abstract
With a view to having further insight into the mathematical content of
the non-Hermitian Hamiltonian associated with the diffusion–reaction (D–R)
equation in one dimension, we investigate (a) the solitary wave solutions of
certain types of its nonlinear versions, and (b) the problem of real eigenvalue
spectrum associated with its linear version or with this class of non-Hermitian
Hamiltonians. For case (a) we use the standard techniques to handle the
quadratic and cubic nonlinearities in the D–R equation whereas for case (b)
a newly proposed method, based on an extended complex phase space, is
employed. For a particular class of solutions, an Ermakov system of equations
is also found for the linear case. Further, corresponding to the ‘classical’ version
of the above one-dimensional complex Hamiltonian, an equivalent integrable
system of two, two-dimensional, real Hamiltonians is suggested.

PACS numbers: 05.45.Yv, 02.30.Ik, 02.30.Jr

1. Introduction

In mathematical sciences some equations are highly privileged in the sense that their
incarnations in analogous forms [1], at times of course with different meanings of the
underlying symbols, explain altogether different phenomena in Nature. One such equation,
besides the equation of continuity, is the diffusion–reaction (D–R) equation which has offered
explanations of many phenomena lying in the domains of not only physics and chemistry but
also biology and (now) perhaps social and economic sciences. While the linear version of
the D–R equation under its various names such as the heat equation, Fokker–Planck equation,
Schrödinger-like equation, etc has been studied very extensively in different contexts, the study
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of its nonlinear versions and sometimes in higher dimensions has also evoked considerable
interest in recent years [2–8].

Before proceeding further some important remarks about the mathematical contents of the
D–R and Schrödinger equations are worth making. The linear version of the D–R equation,
namely

−D∇2C(x, t) + v · ∇C(x, t) + U(x)C(x, t) = −∂C(x, t)
∂t

, (1)

can be compared with the time-dependent Schrödinger equation

−1

2
∇2ψ(x, t) + V(x)ψ(x, t) = i

∂ψ(x, t)
∂t

, (2)

where h̄ = m = 1. In equation (1) D is the diffusion coefficient and the velocity v in general
is a function of x and t. In the present work, however, we shall consider v as a constant,
independent of both space and time. Note that in mathematical literature equations (1) and (2)
are classified differently in view of the different long-time behaviour of their solutions. As a
matter of fact, in the limit t → ∞, while the complete solution of (1) vanishes, the solution
of (2) remains periodic in time. The presence of the velocity term in (1) further makes it distinct
from (2). In many applications (listed in [3–5]) of (1) (particularly in some biological studies
such as the spread of a favoured gene, population growth of species, ecological competition,
etc), one investigates the dynamics and equilibrium properties of certain model systems as a
combination of both diffusion and convection with some kind of back reaction (advection)
[4]. The system thus involves velocity dependence and is a non-conservative one. In some
cases, the description of the underlying phenomenon also requires an account of nonlinear
terms (cf [3] and [6]). Other physical concepts attributed to the velocity term in (1) are those
of turbulent diffusion or of anomalous diffusion in random media. The presence of velocity
term in (1), in fact, makes the corresponding ‘Hamiltonian’ non-Hermitian and as a result the
problem of reality of eigenvalues of such a Hamiltonian becomes of considerable interest in
view of some recent studies [9–11] in this direction. We shall address some of these issues
in the present work. Finally, while equation (2) in quantum mechanics is set on the basis of
some physical requirements with a rich physics content in it, equation (1), on the other hand,
is just a classical one like any other partial differential equation in mathematics, of course with
different contextual meanings of various symbols.

In the present work, we shall investigate the solutions of the one-dimensional linear
D–R equation,

Ct + vCx = DCxx − V (x)C, (3)

and some of its nonlinear versions, namely

Ct + vCx = DCxx + [a + U(x)]C − b|C|C, (4)

and

Ct + vCx = DCxx + [a + U(x)]C − b|C|2C, (5)

where a and b are real constants. We were motivated to study these equations from the recent
works of Moiseyev and Gluck [5] and of Nelson and Shnerb [3]. These authors study the
three-dimensional version of these equations with reference to the delocalization problem in
population biology—a feature of the non-Hermitian character of the Hamiltonian associated
with these equations. Undoubtedly, the present study of one-dimensional systems will have
limited scope as far as the applications to physical problems are concerned; nevertheless
it will provide some clue towards a better understanding of these ‘real-world’ problems in
mathematical terms. While equation (4) can be considered as a particular type of generalization
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of the Malthus–Verhulst growth model [6] in the study of biological systems, equation (5) is
the analogue of nonlinear Schrödinger equation. These cases, to the best of our knowledge,
have not been studied earlier. In fact, equation (4) is a slightly different version of the equation
studied by Nelson and Shnerb [3] in the sense that the quadratic nonlinearity now appears as
|C|C instead of C2.

With regard to equation (3), we recast it in the form

HC(x, t) = −∂C(x, t)

∂t
, (6)

where H, a non-Hermitian ‘Hamiltonian’ operator, is given by [5]

H = −D
∂2

∂x2
+ v

∂

∂x
+ V (x).

To be more specific, one writes the solution of (3) as C(x, t) = σ(x)τ(t) and uses the method
of separation of variables to obtain the eigenvalue equations,

Hσ(x) = λσ(x), (7)

with

H = −D
d2

dx2
+ v

d

dx
+ V (x), (8)

and (dτ/dt) = −λτ . The solution of the latter equation implies an exponential decay of
the complete solution with time. Note that for a complex eigenvalue λ there is a possibility
of retaining the periodic behaviour of solutions with time—a feature built already in the
Schrödinger equation (2). Further, we write the ‘classical’ analogue (using p = −id/dx) of
H as

H(x, p) = Dp2 + ivp + V (x). (9)

Note that for a symmetric potential the non-Hermitian Hamiltonian (9) is symmetric under
parity (x → −x) operation (P) and it is not symmetric under time-reversal (t → −t, i → −i)
operation (T) or under the combined operations of parity and time reversal (PT ). Therefore,
in the light of the conjecture/prescription suggested by Bender et al [9] and used by others
[10] equation (7) cannot admit real eigenvalues, as H is not a PT -symmetric Hamiltonian
though it is non-Hermitian. For the case of a symmetric potential V (x), we shall investigate
this problem of reality of eigenvalues here within the framework of a complex phase-space
approach proposed [12] and used recently [13] for a variety of complex potentials. In this
approach, the real (x, p) phase plane is extended to a complex phase space characterized by
writing x and p as [14]

x = x1 + ip2, p = p1 + ix2, (10)

where (x1, p1) and (x2, p2) turn out to be the canonical pairs in an equivalent real two-
dimensional space [15]. The arrangement of the paper is as follows: in section 2 we investigate
the solitary wave solutions of the nonlinear equations (4) and (5). We study the eigenvalue
problem associated with the non-Hermitian operator (8) in section 3 and highlight some other,
so far unexplored, mathematical features of the Hamiltonian (8) (or (9)). In particular, for
the linear case, in analogy with the Schrödinger equation [16] an Ermakov system [17] of
equations is derived in this section. Also, corresponding to the one-dimensional complex
Hamiltonian (9), an equivalent system of two, two-dimensional real Hamiltonians is obtained
for an analytic potential function V (x). Finally, concluding remarks are made in section 4.
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2. Solitary wave solutions of the nonlinear D–R equations

In this section we obtain solitary wave solutions of the nonlinear equations (4) and (5).

2.1. Solution of equation (4)

For the travelling wave solution of equation (4) we consider the case when the random potential
U(x) is constant, say U0, and for the solution C(x, t) we make an ansatz

C(x, t) = r(ξ) exp[iθ(ξ) + δt], (11)

where ξ = x − wt , and δ and w are arbitrary real constants to be determined later. Using (11)
in (4) and then separating the real and imaginary parts of the resultant expression, one obtains

(v − w)r ′ + rδ = Dr ′′ − Drθ ′2 + (a + U0)r − br2, (12)

(v − w)rθ ′ = D(2r ′θ ′ + rθ ′′). (13)

Here the primes indicate the derivatives with respect to the variable ξ . Next we look for the
solutions of these coupled total differential equations in r(ξ) and θ(ξ) under some simplifying
assumptions.

After defining y = r2θ ′ for the right-hand side, equation (13) can easily be recast in the
form, y ′ = ((v − w)/D)y, which admits a solution y = y0 exp[((v − w)/D)ξ ], or

θ ′ = (k/r2) exp[((v − w)/D)ξ ], (14)

where y0 (or k) is the integration constant. For simplicity, we concentrate here on the case
when w = v, i.e., when the parameter w in ansatz (11) becomes the convective velocity v of
the system. This leads to θ ′ = k/r2.

For the above choices, equation (12) can be expressed as

r ′′ = k2

r3
+

1

4
Br +

3

8
Ar2,

which can easily be integrated to give

(r ′)2 = −k2

r2
+

1

4
Br2 +

1

4
Ar3 +

k1

4
, (15)

where (k1/4) is the constant of integration and B = 4(δ − a − U0)/D,A = (8b/3D).
Alternatively, by defining S = r2 we write equation (15) in terms of the variable S as

(S ′)2 = A
√

S5 + BS2 + k1S − 4k2. (16)

For the solitary wave solutions, we set k1 = k = 0, thereby reducing equation (16) to the form
S ′ = S(A

√
S + B)1/2 or equation (15) to

r ′ = (1/2)r
√

Ar + B, (17)

which can be integrated to give [18] r(ξ) as

r(ξ) = −(B/A) sec2

(√−B

4
ξ + ξ0

)
,

for B < 0, and

r(ξ) = (B/A)cosech2

(√
B

4
ξ + ξ0

)
,
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for B > 0. Correspondingly, the solution of θ ′ = 0 equation is taken as θ = constant (say
θ0). Finally, the solutions of (4) in view of (11) becomes

C(x, t) = −(B/A) exp(iθ0 + δt) sec2

(√−B

4
ξ + ξ0

)
, (B < 0), (18)

and

C(x, t) = (B/A) exp(iθ0 + δt)cosech2

(√
B

4
ξ + ξ0

)
, (B > 0), (19)

where ξ0 (=x0 − vt0) is the constant of integration and the same can be fixed from the initial
conditions.

2.2. Solution of equation (5)

Following the same procedure as for equation (4) in the above subsection with ansatz (11), the
imaginary part of the resultant expression, in the present case, will yield the same equation as
equation (13). The real part however now becomes

(v − w)r ′ + rδ = Dr ′′ − Drθ ′2 + (a + U0)r − br3.

An equation analogous to equation (16) for the present case can be derived as

(S ′)2 = AS3 + BS2 + k1S − 4k2. (20)

Under the same simplifying assumptions as made in the above subsection for the case of
solitary wave solutions, the solution of θ ′ = 0 equation is again taken as θ = θ0. The equation
analogous to equation (17) now becomes

r ′ = (1/2)r
√

Ar2 + B, (21)

where B is the same as before but A = (2b/D). Equation (21) can be solved [18] to give

r(ξ) =
√

−B/A sec

(√−B

2
ξ + ξ0

)
, (B < 0),

r(ξ) = ±
√

B/A cosech

(√
B

2
ξ + ξ0

)
, (B > 0).

Finally, the solitary wave solution of equation (5) can be written as

C(x, t) =
√

−B/A exp(iθ0 + δt) sec

(√−B

2
ξ + ξ0

)
, (B < 0), (22)

C(x, t) = ±
√

B/A exp(iθ0 + δt)cosech

(√
B

2
ξ + ξ0

)
, (B > 0). (23)

where ξ0 is the constant of integration to be determined from the initial conditions.

3. Eigenvalue problem associated with equation (7)

3.1. General results

Since the Hamiltonian operator (8) is non-Hermitian, the eigenvalue λ in (7) need not be real.
Further for a symmetric potential, H is also not a PT -symmetric (a relaxed case of non-
Hermiticity) one and hence may not admit [9] real eigenvalues. Naturally, the conjecture of
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Bender et al [9] for the reality of eigenvalues of PT -symmetric potentials (developed mainly
in the context of the Schrödinger equation) is bound to show some limitations in this case.
While the concept of pseudo-Hermiticity [11] may be worth attempting for the present case,
we have however been pursuing [12, 13] an altogether different method to handle the complex
Hamiltonian systems. From this point of view, our approach is quite general and the concept
of an extended complex phase space defined by (10) is used. In what follows we investigate
the solution of an analogous D–R equation (7), in the sense that x and p in it are now complex.

Note that V (x) in (7) in general could be complex just as x, p and σ are. Thus, we write
V (x) = Vr(x1, p2) + iVi(x1, p2), σ (x) = σr(x1, p2) + iσi(x1, p2), λ = λr + iλi , and

d

dx
= ∂

∂x
− i

∂

∂p2
,

d2

dx2
= ∂2

∂x2
1

− 2i
∂2

∂x1∂p2
− ∂2

∂p2
2

,

and use them in (7) to give

−D
[
σr,x1x1 − 2iσr,x1p2 − σr,p2p2 + iσi,x1x1 + 2σi,x1p2 − iσi,p2p2

]
+ v

[
σr,x1 − iσr,p2 + iσi,x1 + σi,p2

]
+ Vrσr − Viσi + iVrσi + iViσr = λrσr − λiσi + iλiσr + iλrσi. (24)

Now we equate the real and imaginary parts of this expression separately to zero. This leads
to the following pair of coupled partial differential equations in σr and σi :

−D
[
σr,x1x1 − σr,p2p2 + 2σi,x1p2

]
+ v

[
σr,x1 + σi,p2

]
+ Vrσr − Viσi = λrσr − λiσi,

−D
[ − 2σr,x1p2 + σi,x1x1 − σi,p2p2

]
+ v

[ − σr,p2 + σi,x1

]
+ Vrσi + Viσr = λiσr + λrσi.

Further use of the Cauchy–Riemann conditions for the analyticity of σ(x), namely,

σr,x1 = σi,p2 , σr,p2 = −σi,x1 , (25)

leads to simpler forms of these equations, namely

−4Dσr,x1x1 + 2vσr,x1 + Vrσr − Viσi = λrσr − λiσi, (26)

−4Dσi,x1x1 + 2vσi,x1 + Vrσi + Viσr = λiσr + λrσi. (27)

As for the case of Schrödinger equation [12], we make an ansatz here for the solution,
namely,

σ(x) ≡ σr + iσi = eg(x), g(x) = gr(x1, p2) + igi(x1, p2), (28)

which gives σr(x1, p2) = egr cos gi, σi(x1, p2) = egr sin gi or gr = (1/2) ln
(
σ 2

i + σ 2
r

)
, gi =

tan−1(σi/σr). Now, after using (28) into (26) and rationalizing the resultant expression with
respect to the orthogonal functions cos(gi) and sin(gi), we obtain the following pair of coupled
partial differential equations:

gr,x1x1 +
(
gr,x1

)2 − (
gi,x1

)2 − (v/2D)gr,x1 + (1/4D)(λr − Vr) = 0, (29)

gi,x1x1 + 2gr,x1 .gi,x1 − (v/2D)gi,x1 + (1/4D)(λi − Vi) = 0. (30)

Interestingly, the same set of equations are also arrived at if one rationalizes equation (27)
using (28). Thus, for a given complex potential, equations (29) and (30) in which the original
ansatz for σ(x) is now transcribed into that for g(x) can be solved to obtain the real and
imaginary parts of the eigenvalue λ. Further, we shall consider the two situations—one when
the parameter(s) of the potential V (x) are real or the other when they are complex. In the
following we demonstrate the applications of these general results to the case of a simple
harmonic oscillator corresponding to these two situations.
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3.2. Example of a complex harmonic oscillator potential

We first consider the case of a complex harmonic oscillator potential,

V (x) = ax2 (31)

where a is real. Using (10), we write Vr(x1, p2) = a
(
x2

1 −p2
2

)
, Vi(x1, p2) = 2ax1p2 and make

the following ansatz for gr and gi which is consistent with the Cauchy–Riemann conditions:

gr(x1, p2) = α1x1 + α2p2 + α20
(
x2

1 − p2
2

)
+ α11x1p2,

gi(x1, p2) = −α2x1 + α1p2 − 1
2α11

(
x2

1 − p2
2

)
+ 2α20x1p2,

(32)

where αi, αij are real constants to be determined later. Substitutions of (32) into (29) and (30)
and subsequently the rationalization of the resultant expressions with respect to the powers of
x1, p2 and (x1p2) yield a set of relations among αi and αij . These equations can be solved
for the unknown constants and for λr and λi using the method described in our earlier works
[12, 13]. Thus, for potential (31), we obtain

λr = ∓2
√

aD + (v2/4D), λi = 0,

gr(x1, p2) = (v/4D)x1 ±
√

a/16D
(
x2

1 − p2
2

)
,

gi(x1, p2) = (v/4D)p2 ±
√

a/4Dx1p2

(33)

or equivalently,

σ(x) = exp
[
(v/4D)x ±

√
a/16Dx2

]
. (34)

Next, we consider the case when the parameter a in potential (31) is complex, a = ar + iai .
In that case we have

Vr(x1, p2) = ar

(
x2

1 − p2
2

) − 2aix1p2, Vi(x1, p2) = ai

(
x2

1 − p2
2

) − 2arx1p2. (35)

As before, the use of ansatz (32) in (29) and (30) now yields a different set of equations for αi

and αij after the rationalization of the resultant expressions. In this case the eigenvalues turn
out to be

λr = ∓
√

2Da+ + (v2/4D), λi = ±
√

2Da−, (36)

and the eigenfunction σ(x) in terms of gr(x1, p2) and gi(x1, p2) as

gr(x1, p2) = (v/4D)x1 + (a+/4
√

2D)
(
x2

1 − p2
2

) − (a−/2
√

2D)x1p2;
gi(x1, p2) = (v/4D)p2 + (a−/4

√
2D)

(
x2

1 − p2
2

)
+ (a+/2

√
2D)x1p2,

or equivalently,

σ(x) = exp[(v/4D)x + (1/4
√

2D)(a+ + ia−)x2], (37)

where a± = √|a| ± ar .
Before we highlight two special cases of these general results it can be seen that the

eigenvalues for the non-Hermitian operator (8) are real as long as the potential parameter a is
real. Once a becomes complex, then the complexity of the eigenvalue may arise as a result of
ai �= 0.

Note that for the case when D = (1/2) and v = 0, above results for the complex harmonic
oscillator trivially reduce to those derived by solving the Schrödinger equation in extended
complex phase space (cf [13], section 3). Further, if we set ai = 0, ar = a = |a| (or a− = 0,
a+ = √

2a), then it is not difficult to see that results (36) and (37) for the complex coupling
reduce to that for the case of real coupling (cf equations (33) and (34)).

Mainly for the sake of a comparison we present here the results for the case of real
harmonic oscillator, V (x) = ax2, obtained by solving (7) in a real phase plane. Again using
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the ansatz σ(x) = exp[g(x)], with g(x) = αx2 +βx for the solution, it is not difficult to arrive
at the following results for λ and σ(x):

λ = ∓
√

aD + (v2/4D), (38)

σ(x) = exp
[
(v/2D)x ±

√
a/4Dx2

]
. (39)

It can be seen that results (38) and (39) differ slightly from (33) and (34) in terms of numerical
factors. This is mainly because of the requirement of analyticity of σ(x) used in the case of
complex phase space.

3.3. Ermakov analogue of D–R equation (7)

About 125 years ago, Ermakov for the first time demonstrated [17] the linkage between the
solutions of certain type of differential equations via an integral invariant. This latter construct,
now termed as ‘Ermakov’ (or ‘Lewis’) invariant in the context of classical mechanics, has
played [19] an important role in the study of time-dependent systems and in the quantum [16]
and other contexts [21, 22] several new interpretations of this mathematical construct have
been sought. Here, since the variable x characterizes the space dimension, we shall call this
construct the ‘space invariant’.

For the present purpose, we rewrite equation (7) as

σ ′′ − γ σ ′ + q2(x)σ = 0, (40)

where

γ = (v/D), q2(x) = (λ − V (x))/D,

and look for its solutions in the form (ansatz)

σ(x) = φ(x) exp[if (x)]. (41)

Now, after using (41) in (40) and equating the real and imaginary parts separately to zero in
the resultant expression, we obtain

φ′′ − (f ′)2φ − γφ′ + q2φ = 0, (42)

f ′′φ + 2f ′φ′ − γφf ′ = 0. (43)

As before, equation (43) after defining y = φ2f ′, can easily be recast in the form y ′ = γy,
whose solution now becomes y = κ exp(γ x), or

f ′ = κ eγ x/φ2, (44)

where κ is the constant of integration. While the integration of (44) in the form

f (x) = κ

∫ x

(eγ x ′
/φ2(x ′)) dx ′, (45)

suggests a phase-amplitude connection in the present case, its use in (42) leads to a nonlinear
differential equation,

φ′′ − γφ′ + q2φ = κ2 e2γ x/φ3. (46)

In order to derive the space invariant, multiply equation (40) by φ and equation (46) by σ

and subtract the latter to give

(φσ ′′ − φ′′σ) + γ (σφ′ − σ ′φ) = −κ2 e2γ xσ/φ3. (47)
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This expression, after using 2(φσ ′ − φ′σ) as the integrating factor, can immediately be
integrated to give the space invariant, K, in the form

K = κ2(σ/φ)2 + e−2γ x(φσ ′ − φ′σ)2. (48)

Note that structure (48) satisfies (dK/dx) = 0, and hence is termed as ‘space invariant’.
Clearly, it is a manifestation of the phase-amplitude connection (45). Although, K as such
appears to be independent of the form of V (x) but the fact is that the role V (x) enters through
(46) or for that matter via (40). The system of equations (40), (46) and (48) constitute an
Ermakov system.

Another interesting aspect of the ‘classical’ version (9) of the Hamiltonian (8), which is
complex even in the real phase plane, can be explored by using the prescription of our earlier
work [15]. Note that in the complex phase space (10) this version of H, when expressed
as H(x, p) = H1(x1, x2, p1, p2) + iH2(x1, x2, p1, p2), becomes a function of two complex
variables x and p and its real and imaginary parts turn out to be

H1(x1, x2, p1, p2) = D
(
p2

1 − x2
2

) − vx2 + Vr(x1, p2), (49)

H2(x1, x2, p1, p2) = 2Dp1x2 + vp1 + Vi(x1, p2), (50)

where V (x) = Vr(x1, p2) + iVi(x1, p2) is used. Next, we compute the Poisson bracket
[H1,H2]PB from

[H1,H2]PB = ∂H1

∂x1

∂H2

∂p1
− ∂H1

∂p1

∂H2

∂x1
+

∂H1

∂x2

∂H2

∂p2
− ∂H1

∂p2

∂H2

∂x2
. (51)

It can be noted that for H1 and H2 given by (49) and (50) the Poisson bracket (51) vanishes,
if and only if the real and imaginary parts of V (x) satisfy the Cauchy–Riemann conditions,
namely, Vr,x1 = Vi,p2 , Vi,x1 = −Vr,p2 . In other words, this implies the analyticity of V (x).
Further, vanishing of the Poisson bracket (51) also suggests that H1 and H2 are in involution and
independent in the sense [15] that vectors νj = J∇yHj (y) for j = 1, 2 and y = x1, x2, p1, p2

turn out to be linearly independent for (49) and (50). Here J is the symplectic unit matrix. It
may be mentioned that H1 and H2 as given by (49) and (50) fulfil all the other requirements
listed in [15] for a biharmonic function or for an auto-Backlund transformation and thereby
enabling the integrability of an equivalent system in two real dimensions [15].

4. Concluding discussion

From the point of view of learning more about the D–R equation, two slightly disconnected
aspects of this equation are explored in this work. In the first part, we have studied the
solitary wave solutions of the D–R equation with some specific types of quadratic and cubic
nonlinearities, which, to the best of our knowledge, have not been investigated earlier in this
context. With regard to the application of these results, it concerns the modelling part of the
study of a nonlinear phenomenon. In fact, there appear now many situations in the fields
of population biology or in different branches of physics and chemistry, where the results
obtained here can be useful in offering the alternatives while accounting for the nonlinearity
in such studies.

We have restricted ourselves only to the study of solitary wave solutions of equations (4)
and (5) by way of ignoring certain terms in equations (16) and (20). This is done mainly
for simplicity; otherwise one can also retain all the terms in these equations and integrate the
resultant expressions to obtain the travelling wave solutions of more general type. In fact, it
is not difficult to arrive at the cnoidal wave solution in case of equation (5) for certain choices
of the parameters and in analogy with the KdV equation [20].
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In spite of the fact that the Hamiltonian (8) is non-Hermitian, it does not admit complex
eigenvalues in general (cf section 3.2). The complex eigenvalues can, however, be expected
if the parameter(s) of the potential also becomes complex in addition to the phase space. In
some sense this will bring the D–R equation closer to the Schrödinger equation in spite of the
presence of the velocity term in the former, particularly with reference to the large-t behaviour
of their solutions.

Two previously unexplored (to the best of our knowledge) aspects of the D–R
Hamiltonian (8) are highlighted in section 3.3. These studies only hint to the richness of
the mathematical content present already in the Hamiltonian (8) or in its ‘classical’ version
(9). In analogy with other studies [16, 19, 21, 22], a couple of possible interpretations
of the constructed space invariant K (cf equation (48)) can be re-emphasized here in the
present context. Firstly, since K is a space invariant and involves the solutions of both
equations (40) and (46), it can act as a geometric constraint with regard to the validity of
these solutions. Secondly, as the invariant K is the manifestation of a particular type of
phase-amplitude connection (45) via the nonlinear equation (46), its existence itself suggests
[19, 22] a nonlinear superposition principle in which the solution of (46) is expressible in
terms of two linearly independent solutions of (40). Further applications of some of these
results to stellar structure studies are in progress.

Acknowledgments

A part of this work was done when the author was visiting the Inter-University Centre for
Astronomy and Astrophysics (IUCAA), Pune as an Associate. He wishes to thank the Director,
Professor N Dadhich and Professor A Kembhavi for the facilities, Professors T Padmanabhan
and V Sahni for several helpful discussions. Thanks are also due to Drs D Parashar and
M Sami for a critical reading of the manuscript.

References

[1] Kaushal R S 2003 Structural Analogies in Understanding Nature (New Delhi: Anamaya Publishers)
[2] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570
[3] Nelson D R and Shnerb N M 1998 Phys. Rev. E 58 1383, and references therein

Also see, Shnerb N M and Nelson D R 1998 Phys. Rev. Lett. 80 5172
[4] Chalker J T and Jane Wang Z 1997 Phys. Rev. Lett. 79 1797
[5] Moiseyeb N and Gluck M 2001 Phys. Rev. E 63 041103
[6] Murray J D 1993 Mathematical Biology (New York: Springer)
[7] Efetov K B 1997 Phys. Rev. Lett. 79 9630

Goldsheid I V and Khoruzhenko B A 1998 Phys. Rev. Lett. 80 2897
[8] Kaushal R S and Parashar D 2000 Advanced Methods of Mathematical Physics (New Delhi/Boca Raton,

FL/London: Narosa Publishing House/CRC Press/Alpha Science) chapter 10
Also see, King D R 1991 J. Phys. A: Math. Gen. 24 3213
King D R 1990 J. Phys. A: Math. Gen. 23 3681

[9] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201, and references therein

[10] Znojil M and Lavai G 2000 Phys. Lett. A 271 327
Fernandez F M et al 1998 J. Phys. A: Math. Gen. 31 10105
Bagchi B, Cannata F and Quesne C 2000 Phys. Lett. A 269 79
Ahmed Z 2002 Phys. Lett. A 294 287, and citations in [13]

[11] Mustafazadeh A 2002 J. Math. Phys. 43 2814
Mustafazadeh A 2002 J. Math. Phys. 43 205, and references therein

[12] Kaushal R S 2001 J. Phys. A: Math. Gen. 34 L709



D–R Hamiltonian and the solutions of linear and nonlinear D–R equations in one dimension 3907

[13] Kaushal R S and Parthasarathi 2002 J. Phys. A: Math. Gen. 35 8747
Parthasarathi, Parashar D and Kaushal R S 2004 J. Phys. A: Math. Gen. 37 781, and references therein

[14] Xavier A L Jr and Aguiar M A M 1996 Ann. Phys., NY 252 458
[15] Kaushal R S and Korsch H J 2000 Phys. Lett. A 276 47
[16] Kaushal R S 2001 Int. J. Theor. Phys. 40 835

Kaushal R S 2000 Mod. Phys. Lett. A 15 1391
[17] Ermakov V P 1880 Univ. Izv. Kiev III 20 1

Lewis H R 1968 J. Math. Phys. 9 1976
[18] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (London: Academic)
[19] Kaushal R S 1998 Classical and Quantum Mechanics of Noncentral Potentials: A Survey of Two-Dimensional

Systems (New Delhi/Heidelberg: Narosa/Springer) chapters 2 and 3
[20] Drazin P G and Johnson R S 1990 Soliton: An Introduction (Cambridge: Cambridge University Press)

Also see, Kaushal R S and Parashar D 2000 Advanced Methods of Mathematical Physics (New Delhi/Boca
Raton, FL/London: Narosa Publishing House/CRC Press/Alpha Science) chapter 8

[21] See, for example, Kaushal R S 1998 Class. Quantum Grav. 15 197
Hawkins R M and Lidsey J E 2002 Phys. Rev. D 66 023523
Williams F L and Kevrekidis P G 2003 Class. Quantum Grav. 20 L177

[22] See, for example, Ray J R and Reid J L 1979 J. Math. Phys. 20 2054
Kaushal R S 1998 Classical and Quantum Mechanics of Noncentral Potentials: A Survey of Two-Dimensional

Systems (New Delhi/Heidelberg: Narosa/Springer) chapter 7


